安全数据分析相关资料整合
本篇基于404 Not Found师傅整理的开源项目:AI-for-Security-Learning[1],在此基础上自己做了些修改,持续更新。
0. 综述篇
1. 防护篇
使用AI保护应用
恶意样本检测
- 深度学习在恶意软件检测中的应用
- 恶意软件与数据分析
- 利用机器学习进行恶意代码分类
- 用机器学习检测Android恶意代码
- Malware Detection in Executables Using Neural Networks
- 基于深度学习的恶意样本行为检测(含源码)
- 用机器学习进行恶意软件检测——以阿里云恶意软件检测比赛为例
- 第二届微软恶意软件预测挑战赛初探
- DataCon大数据安全分析比赛冠军思路分享:方向二-恶意代码检测
- 第三届阿里云安全赛季军-0day
- 第三届阿里云安全算法挑战赛冠军代码
- 使用TextCNN模型探究恶意软件检测问题
- 基于卷积神经网络的恶意代码家族标注
入侵检测
- 利用机器学习检测HTTP恶意外连流量
- ExecScent: Mining for New C&C Domains in Live Networks with Adaptive Control Protocol Templates
- MADE: Security Analytics for Enterprise Threat Detection
- 机器学习在互联网巨头公司实践
- 机器学习在入侵检测方面的应用 - 基于ADFA-LD训练集训练入侵检测判别模型
- datacon比赛方向三-攻击源与攻击者分析writeup
- 基于机器学习的恶意软件加密流量检测研究分享
- anomaly-detection-through-reinforcement-learning
域名安全检测
- 机器学习与威胁情报的融合:一种基于AI检测恶意域名的方法
- 使用fasttext进行DGA检测
- 机器学习实践-DGA检测
- 使用生成对抗网络(GAN)生成DGA
- 使用CNN检测DNS隧道
- DNS Tunnel隧道隐蔽通信实验 && 尝试复现特征向量化思维方式检测
- 探秘-基于机器学习的DNS隐蔽隧道检测方法与实现
- DataCon 2019: 1st place solution of malicious DNS traffic & DGA analysis
- DataCon 9102: DNS Analysis
- Datacon DNS攻击流量识别 内测笔记
业务安全检测
Web安全检测
Web安全之URL异常检测
- 基于机器学习的web异常检测
- 基于大数据和机器学习的Web异常参数检测系统Demo实现
- 基于机器学习的web应用防火墙
- LSTM识别恶意HTTP请求
- 基于URL异常检测的机器学习模型mini部署
- 我的AI安全检测学习笔记(一)
- A Deep Learning Based Online Malicious URL and DNS Detection Scheme
- POSTER: A PU Learning based System for Potential Malicious URL Detection
Web安全之SQLi检测
Web安全之XSS检测
Web安全之攻击多分类检测
Web安全之WAF建设
Web安全之Webshell检测
- 基于机器学习的分布式webshell检测系统-特征工程(1)
- 深度学习PHP webshell查杀引擎demo
- 使用机器学习识别WebShell
- 基于机器学习的分布式Webshell检测系统
- 基于机器学习的Webshell发现技术探索
- 刘焱: Webshell 发现技术实战解析
- 安普诺张涛:再谈webshell检测
- 新开始:webshell的检测
- 基于机器学习的WebShell检测方法与实现(上)
- 初探机器学习检测PHP Webshell
- 基于AST的Webshell检测
Web安全之其他
APT检测
安全运营
二进制安全
杂项
- 机器学习在WindowsRDP版本和后门检测上的应用
- 用机器学习检测恶意PowerShell
- Deep learning rises: New methods for detecting malicious PowerShell
- 机器学习算法在用户行为检测(UBA)领域的应用
- 利用机器学习和规则实现弱口令检测
- 一个关于人工智能渗透测试分析系列
- 机器学习在安全攻防场景的应用与分析
保护AI
2. 对抗篇
使用AI攻击应用
- AI与Android漏洞挖掘的那些事儿
- AI与安全的恩怨情仇五部曲「1」Misuse AI
- 一种基于机器学习的自动化鱼叉式网络钓鱼思路
- Weaponizing data science for social engineering: Automated E2E spear phishing on Twitter
- Deep Exploit: Fully automatic penetration test tool using Machine Learning
- GyoiThon: Fully automatic penetration test tool using Machine Learning
- CNN+BLSTM+CTC的验证码识别从训练到部署
- Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN
攻击AI
攻击AI基础框架
- 深度学习框架中的魔鬼——探究人工智能系统中的安全问题
- 对深度学习的降维攻击 — 人工智能系统数据流中的安全风险
- DEFCON CHINA议题解读 | 对深度学习系统的数据流攻击
- AI繁荣下的隐忧——Google Tensorflow安全风险剖析
- AI与安全「2」:Attack AI(4)聊聊机器学习框架相关的CVE
攻击AI数据/模型
- 安全领域中机器学习的对抗和博弈
- 基础攻防场景下的AI对抗样本初探
- 使用生成对抗网络(GAN)生成DGA
- 详解如何使用Keras实现Wassertein GAN
- Is attacking machine learning easier than defending it?
- 对深度学习的逃逸攻击 ——探究人工智能系统中的安全盲区
- NLP机器学习模型安全性及实践
- 机器学习对抗性攻击报告
- 从安全视角对机器学习的部分思考
- 污染TensorFlow模型: XCTF 2019 Final tfboys命题思路
- 中科院信工所发布《深度学习系统的隐私与安全》综述论文,187篇文献总结
- Towards Privacy and Security of Deep Learning Systems: A Survey
攻击AI系统
References
[1] AI-for-Security-Learning, 404notf0und/